Wie andere schon erwähnt haben, sollten Sie einen IIR (Endlosimpulsantwort) - Filter anstelle des FIR (Finite Impulse Response) Filter, den Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Bei kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie etwa 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit-A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messungen. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele werden als Makros unter Verwendung meines PIC-Assembler-Präprozessors implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch ein Unterprogramm, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie sollten immer erwägen, einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: www. dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, Sie wollen die vorherigen, etwa 6 Artikeln gemittelt, diskret tun es, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample eingeht, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben einen First-Order IIR-Filter der Wert you39re Subtraktion isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 bei 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und schrittweise Niveaus in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spitze aufweisen, wenn der Eingang geändert wird, und wieder 1ms später, wird aber haben Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil dieser Mittelwerte / Einfacher gleitender Durchschnitt Durchschnittswerte / Einfacher gleitender Durchschnitt Sie werden angeregt, diese Aufgabe entsprechend der Aufgabenbeschreibung zu lösen, wobei jede beliebige Sprache Sie kennen. Berechnen der einfachen gleitenden Durchschnitt einer Reihe von Zahlen. Erstellen Sie eine Stateful-Funktion / Klasse / Instanz, die einen Punkt dauert und gibt eine Routine zurück, die eine Zahl als Argument annimmt und einen einfachen gleitenden Durchschnitt ihrer Argumente zurückgibt. Ein einfacher gleitender Durchschnitt ist ein Verfahren zum Berechnen eines Durchschnitts eines Stroms von Zahlen durch nur Mittelung der letzten 160 P 160-Nummern aus dem Strom 160, wobei 160 P 160 als Periode bekannt ist. Sie kann implementiert werden, indem eine Initialisierungsroutine mit 160 P 160 als Argument 160 I (P) 160 aufgerufen wird, die dann eine Routine zurückgeben sollte, die, wenn sie mit einzelnen aufeinanderfolgenden Elementen eines Stroms von Zahlen aufgerufen wird, den Mittelwert von (up To), die letzten 160 P 160 von ihnen, rufen Sie diese 160 SMA (). Das Wort 160 stateful 160 in der Aufgabenbeschreibung bezieht sich auf die Notwendigkeit für 160 SMA () 160, sich an bestimmte Informationen zwischen Anrufen zu erinnern: 160 Der Zeitraum 160 P 160 Ein geordneter Container von mindestens den letzten 160 P 160 Nummern von jedem von Seine individuellen Anrufe. Stateful 160 bedeutet auch, dass sukzessive Aufrufe von 160 I (), 160 der Initialisierer, 160 separate Routinen zurückgeben sollten, die 160 nicht den gespeicherten Zustand teilen, so dass sie auf zwei unabhängigen Datenströmen verwendet werden können. Pseudocode für eine Implementierung von 160 SMA 160 ist: Diese Version verwendet eine persistente Warteschlange, um die letzten p Werte zu halten. Jede vom init-moving-average zurückgegebene Funktion hat ihren Zustand in einem Atom, das einen Queue-Wert enthält. Diese Implementierung verwendet eine zirkuläre Liste, um die Zahlen in dem Fenster am Anfang jedes Iterationszeigers zu speichern, bezieht sich auf die Listenzelle, die den Wert hält, der sich gerade aus dem Fenster bewegt und durch den gerade addierten Wert ersetzt wird. Verwenden eines Closure-Edit derzeit Diese sma kann nicht nogc, weil es eine Schließung auf dem Heap zugeordnet. Einige Escape-Analyse konnte die Heap-Zuweisung entfernen. Verwenden einer Strukturbearbeitung Diese Version vermeidet die Heapzuweisung des Verschlusses, der die Daten im Stapelrahmen der Hauptfunktion hält. Gleiche Ausgabe: Um zu vermeiden, dass die Gleitkomma-Näherungen aufeinandertreiben und wachsen, kann der Code eine periodische Summe auf dem gesamten kreisförmigen Warteschlangen-Array ausführen. Diese Implementierung erzeugt zwei (Funktions-) Objekte, die den Zustand teilen. Es ist idiomatisch in E, die Eingabe von der Ausgabe (Lesen von Schreiben) zu trennen, anstatt sie zu einem Objekt zu kombinieren. Die Struktur ist die gleiche wie die Implementierung von Standard DeviationE. Das Elixierprogramm unten erzeugt eine anonyme Funktion mit einer eingebetteten Periode p, die als Periode des einfachen gleitenden Durchschnitts verwendet wird. Die run-Funktion liest die numerische Eingabe und übergibt sie an die neu erstellte anonyme Funktion und prüft dann das Ergebnis auf STDOUT. Die Ausgabe ist unten gezeigt, mit dem Durchschnitt, gefolgt von der gruppierten Eingabe, die die Grundlage für jeden gleitenden Durchschnitt bildet. Erlang hat Verschlüsse, aber unveränderliche Variablen. Eine Lösung besteht dann darin, Prozesse und eine einfache Message passing based API zu verwenden. Matrixsprachen haben Routinen, um die Gleitabschnitte für eine gegebene Reihenfolge von Elementen zu berechnen. Es ist weniger effizient Schleife wie in den folgenden Befehlen. Fordert kontinuierlich einen Eingang I auf. Die dem Ende einer Liste L1 hinzugefügt wird. L1 kann durch Drücken von 2ND / 1 gefunden werden, und Mittelwert kann in Liste / OPS gefunden werden. Drücken Sie ON, um das Programm zu beenden. Funktion, die eine Liste mit den gemittelten Daten des bereitgestellten Arguments zurückgibt Programm, das bei jedem Aufruf einen einfachen Wert zurückgibt: list ist die gemittelte Liste: p ist die Periode: 5 gibt die gemittelte Liste zurück: Beispiel 2: Verwenden des Programms movinav2 (i , 5) - Initialisieren der gleitenden Durchschnittsberechnung und Definieren des Zeitraums von 5 movinav2 (3, x): x - neue Daten in der Liste (Wert 3), und das Ergebnis wird auf der Variablen x gespeichert und movinav2 (4, : X - neue Daten (Wert 4), und das neue Ergebnis wird auf Variable x gespeichert und angezeigt (43) / 2. Beschreibung der Funktion movinavg: Variable r - ist das Ergebnis (die gemittelte Liste), die zurückgegeben wird Variable i - ist die Index-Variable, und es zeigt auf das Ende der Unterliste die Liste gemittelt wird. Variable z - eine Helpervariable Die Funktion nutzt die Variable i, um zu bestimmen, welche Werte der Liste bei der nächsten Durchschnittsberechnung berücksichtigt werden. Bei jeder Iteration zeigt die Variable i auf den letzten Wert in der Liste, der in der Durchschnittsberechnung verwendet wird. Also müssen wir nur herausfinden, welcher der erste Wert in der Liste sein wird. Normalerweise müssen p Elemente berücksichtigt werden, also wird das erste Element dasjenige sein, das durch (i-p1) indexiert wird. Jedoch wird bei den ersten Iterationen die Berechnung gewöhnlich negativ sein, so daß die folgende Gleichung negative Indexe vermeiden wird: max (i-p1,1) oder die Anordnung der Gleichung max (i-p, 0) 1. Die Anzahl der Elemente auf den ersten Iterationen ist ebenfalls kleiner, der korrekte Wert (Endindex - Anfangsindex 1) oder die Anordnung der Gleichung (i - (max (ip, 0) 1) 1) , (I-max (ip, 0)). Die Variable z enthält den gemeinsamen Wert (max (ip), 0), so dass der Anfangsindex (z1) ist und die Anzahl der Elemente (iz) mid (Liste, z1, iz) .) Wird addieren Summe (.) / (Iz) ri wird sie durchschnittlich und speichern das Ergebnis an der entsprechenden Stelle in der Ergebnisliste Verwenden eines Schließens und Erstellen einer FunktionDie Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 28: Digitale Signalprozessoren Digitale Signalprozessoren dienen zur schnellen Durchführung von FIR-Filtern und ähnlichen Techniken. Um die Hardware zu verstehen. Müssen wir zuerst die Algorithmen verstehen. In diesem Abschnitt werden wir eine detaillierte Liste der Schritte für die Umsetzung eines FIR-Filter. Im nächsten Abschnitt werden wir sehen, wie DSPs entworfen sind, um diese Schritte so effizient wie möglich durchzuführen. Um zu starten, müssen wir zwischen der Offline-Verarbeitung und der Echtzeit-Verarbeitung unterscheiden. Bei der Offline-Verarbeitung befindet sich das gesamte Eingangssignal gleichzeitig im Computer. Zum Beispiel könnte ein Geophysiker ein Seismometer verwenden, um die Erdbewegung während eines Erdbebens aufzuzeichnen. Nachdem das Schütteln beendet ist, können die Informationen in einen Computer gelesen und in irgendeiner Weise analysiert werden. Ein weiteres Beispiel für die Offline-Verarbeitung ist die medizinische Bildgebung, wie Computertomographie und MRT. Der Datensatz wird erfasst, während sich der Patient innerhalb der Maschine befindet, aber die Bildrekonstruktion kann bis zu einem späteren Zeitpunkt verzögert werden. Wesentlich ist, dass alle Informationen gleichzeitig dem Verarbeitungsprogramm zur Verfügung stehen. Dies ist häufig in der wissenschaftlichen Forschung und Technik, aber nicht in Konsumgütern. Off-line-Verarbeitung ist das Reich der persönlichen Computer und mainframes. Bei der Echtzeitverarbeitung wird das Ausgangssignal zu dem Zeitpunkt erzeugt, zu dem das Eingangssignal akquiriert wird. Dies wird zum Beispiel in der Telefonkommunikation, Hörgeräten und Radar benötigt. Diese Anwendungen müssen die Informationen sofort verfügbar, obwohl es um einen kurzen Betrag verzögert werden kann. Beispielsweise kann eine Verzögerung von 10 Millisekunden in einem Telefonanruf nicht vom Lautsprecher oder Hörer erkannt werden. Ebenso macht es keinen Unterschied, ob ein Radarsignal um wenige Sekunden verzögert wird, bevor es dem Bediener angezeigt wird. Real-time-Anwendungen Eingabe einer Stichprobe, führen Sie den Algorithmus, und geben Sie eine Probe, over-and-over. Alternativ können sie eine Gruppe von Abtastwerten eingeben, den Algorithmus ausführen und eine Gruppe von Abtastwerten ausgeben. Dies ist die Welt der digitalen Signalprozessoren. Nun blicken wir auf Abb. 28-2 und stellen Sie sich vor, dass dies ein FIR-Filter ist, der in Echtzeit implementiert wird. Um das Ausgangssample zu berechnen, müssen wir Zugriff auf eine bestimmte Anzahl der letzten Samples vom Eingang haben. Angenommen, wir verwenden in diesem Filter acht Koeffizienten, eine 0. A 1. Hellip ein 7. Das heißt, wir müssen den Wert der acht letzten Samples aus dem Eingangssignal x n, x n -1, hellip x n -7 kennen. Diese acht Samples müssen im Speicher abgelegt und kontinuierlich aktualisiert werden, wenn neue Samples gewonnen werden. Was ist der beste Weg, um diese gespeicherten Proben zu verwalten Die Antwort ist kreisförmige Pufferung. Fig. 28-3 zeigt einen kreisförmigen Puffer mit acht Proben. Wir haben diesen Kreispuffer in acht aufeinanderfolgenden Speicherplätzen, 20041 bis 20048, platziert. Abbildung (a) zeigt, wie die acht Samples aus dem Eingang zu einem bestimmten Zeitpunkt gespeichert werden können, während (b) die Änderungen nach dem nächsten Sample angezeigt werden erworben. Die Idee der Zirkularpufferung besteht darin, dass das Ende dieses linearen Arrays mit seinem Anfangsspeicherort 20041 verbunden ist, wird als neben 20048 betrachtet, ebenso wie 20044 neben 20045. Sie behalten das Array mit einem Zeiger (eine Variable, deren Wert ist eine Adresse), die angibt, wo sich die letzte Probe befindet. Zum Beispiel enthält der Zeiger in (a) die Adresse 20044, während er in (b) 20045 enthält. Wenn ein neuer Sample erfasst wird, ersetzt er den ältesten Sample im Array und der Zeiger wird um eine Adresse weiter geschoben. Kreispuffer sind effizient, da nur ein Wert geändert werden muss, wenn ein neues Sample erfasst wird. Es werden vier Parameter benötigt, um einen kreisförmigen Puffer zu verwalten. Zunächst muss es einen Zeiger geben, der den Anfang des Zirkularpuffers im Speicher angibt (in diesem Beispiel 20041). Zweitens muss ein Zeiger sein, der das Ende des Arrays angibt (z. B. 20048) oder eine Variable, die seine Länge (z. B. 8) hält. Drittens muss die Schrittgröße der Speicheradressierung angegeben werden. In Fig. 28-3 ist die Schrittgröße eins. Zum Beispiel: Adresse 20043 enthält ein Beispiel, Adresse 20044 enthält das nächste Beispiel, und so weiter. Dies ist oft nicht der Fall. Beispielsweise kann sich die Adressierung auf Bytes beziehen, und jeder Abtastwert kann zwei oder vier Bytes benötigen, um seinen Wert zu halten. In diesen Fällen müsste die Schrittweite zwei oder vier betragen. Diese drei Werte definieren die Größe und die Konfiguration des kreisförmigen Puffers und werden sich während des Programmbetriebs nicht ändern. Der vierte Wert, der Zeiger auf das aktuellste Sample, muss beim Erfassen jedes neuen Samples modifiziert werden. Mit anderen Worten muss es eine Programmlogik geben, die steuert, wie dieser vierte Wert basierend auf dem Wert der ersten drei Werte aktualisiert wird. Während diese Logik ganz einfach ist, muss sie sehr schnell sein. Dies ist der ganze Punkt dieser Diskussion DSPs sollten bei der Verwaltung von kreisförmigen Puffern optimiert werden, um die höchstmögliche Ausführungsgeschwindigkeit zu erzielen. Nebenbei ist die kreisförmige Pufferung auch für die Offline-Verarbeitung von Nutzen. Betrachten wir ein Programm, bei dem sowohl das Eingangssignal als auch das Ausgangssignal vollständig im Speicher enthalten sind. Zirkularpufferung wird nicht für eine Faltungsberechnung benötigt, da auf jede Probe sofort zugegriffen werden kann. Viele Algorithmen werden jedoch stufenweise implementiert. Wobei zwischen jeder Stufe ein Zwischensignal erzeugt wird. Zum Beispiel arbeitet ein rekursiver Filter, der als eine Reihe von Biquaden ausgeführt wird, auf diese Weise. Das Brute-Force-Verfahren ist es, die gesamte Länge jedes Zwischensignals im Speicher zu speichern. Zirkularpufferung bietet eine weitere Option: Nur die Zwischenproben, die für die Berechnung benötigt werden, speichern. Dies verringert die erforderliche Menge an Speicher, auf Kosten eines komplizierteren Algorithmus. Die wichtige Idee ist, dass kreisförmige Puffer für die Offline-Verarbeitung nützlich sind, aber für Echtzeitanwendungen kritisch sind. Nun können wir die Schritte betrachten, die erforderlich sind, um ein FIR-Filter unter Verwendung von kreisförmigen Puffern sowohl für das Eingangssignal als auch für die Koeffizienten zu implementieren. Diese Liste mag trivial und überexamiert sein. Die effiziente Handhabung dieser einzelnen Aufgaben ist es, was einen DSP von einem herkömmlichen Mikroprozessor trennt. Für jedes neue Sample müssen alle folgenden Schritte durchgeführt werden: Das Ziel ist, diese Schritte schnell auszuführen. Da die Schritte 6-12 viele Male wiederholt werden (einmal für jeden Koeffizienten im Filter), müssen diese Operationen besonders beachtet werden. Traditionelle Mikroprozessoren müssen in der Regel diese 14 Schritte seriell (eine nach der anderen), während DSPs sind entworfen, um sie parallel durchzuführen. In einigen Fällen können alle Operationen innerhalb der Schleife (Schritte 6-12) in einem einzigen Taktzyklus abgeschlossen werden. Schauen Sie sich die interne Architektur an, die diese großartige Leistung ermöglicht. FIR Filter-Grundlagen 1.1 Was sind FIR-Filterquot-FIR-Filter sind einer von zwei Primärtypen von digitalen Filtern, die in Anwendungen der digitalen Signalverarbeitung (DSP) verwendet werden, wobei der andere Typ IIR ist. 1.2 Was bedeutet "FIRquot" bedeutet "FIRquot" bedeutet "FInite Impulse Responsequot". Wenn Sie einen Impuls, das heißt, ein einziges quadratisches Beispiel, gefolgt von vielen quot0quot Proben, setzen, werden Nullen herauskommen, nachdem das quot1quot Beispiel seinen Weg durch die Verzögerungslinie des Filters gemacht hat. 1.3 Warum ist die Impulsantwort quotfinitequot Im allgemeinen Fall ist die Impulsantwort endlich, da es keine Rückmeldung in der FIR gibt. Ein Mangel an Feedback garantiert, dass die Impulsantwort endlich ist. Daher ist der Begriff "endliche Impulsantwort" annähernd gleichbedeutend mit einer Quotno-Rückmeldung. Wenn jedoch die Rückkopplung verwendet wird, ist die Impulsantwort endlich, der Filter ist jedoch immer noch ein FIR. Ein Beispiel ist das gleitende Mittelfilter, bei dem jedes Mal, wenn eine neue Probe eintritt, subtrahiert (rückgekoppelt) wird. Dieser Filter hat eine endliche Impulsantwort, obwohl er Rückkopplung verwendet: nach N Abtastungen eines Impulses die Ausgabe Wird immer Null sein. 1.4 Wie kann ich etwas aussprechen? Einige Leute sagen, die Buchstaben F-I-R andere Leute auszusprechen, als wäre es eine Art von Baum. Wir bevorzugen den Baum. (Der Unterschied besteht darin, ob man von einem F-I-R-Filter oder einem FIR-Filter spricht.) 1.5 Was ist die Alternative zu FIR-Filtern DSP-Filter können auch "Infinite Impulse Responsequot (IIR)" sein. (Siehe dspGurus IIR FAQ.) IIR-Filter verwenden Feedback, so dass bei der Eingabe eines Impulses die Ausgabe theoretisch unendlich klingelt. 1.6 Wie FIR-Filter mit IIR-Filtern vergleichen Jedes hat Vor - und Nachteile. Insgesamt aber überwiegen die Vorteile von FIR-Filtern die Nachteile, so dass sie viel mehr als IIRs verwendet werden. 1.6.1 Was sind die Vorteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu den IIR-Filtern bieten FIR-Filter folgende Vorteile: Sie lassen sich leicht als quasi-lineare Phasequot (und in der Regel) realisieren. Einfach ausgedrückt, verzögern lineare Phasenfilter das Eingangssignal, aber donrsquot verzerrt seine Phase. Sie sind einfach zu implementieren. Bei den meisten DSP-Mikroprozessoren kann die FIR-Berechnung durch Schleifen einer einzigen Anweisung durchgeführt werden. Sie eignen sich für Mehrpreisanwendungen. Mit Multi-Rate bedeuten wir entweder einen Dekrementquot (Reduzierung der Abtastrate), eine Interpolation (Erhöhung der Abtastrate) oder beides. Ob Dezimierung oder Interpolation, die Verwendung von FIR-Filtern erlaubt es, einige der Berechnungen wegzulassen, wodurch eine wichtige Recheneffizienz geschaffen wird. Im Gegensatz dazu, wenn IIR-Filter verwendet werden, muss jeder Ausgang individuell berechnet werden, auch wenn dieser Ausgang verworfen wird (so dass die Rückkopplung wird in den Filter integriert werden). Sie haben gewünschte numerische Eigenschaften. In der Praxis müssen alle DSP-Filter mit Hilfe einer Finite-Precision-Arithmetik, dh einer begrenzten Anzahl von Bits, implementiert werden. Die Verwendung von Finite-Precision-Arithmetik in IIR-Filtern kann aufgrund des Feedbacks erhebliche Probleme verursachen, aber FIR-Filter ohne Rückkopplung können gewöhnlich mit weniger Bits implementiert werden, und der Konstrukteur hat weniger praktische Probleme, die mit der nicht idealen Arithmetik zusammenhängen. Sie können mit Hilfe von fractional arithmetic implementiert werden. Im Gegensatz zu IIR-Filtern ist es immer möglich, ein FIR-Filter unter Verwendung von Koeffizienten mit einer Grße von weniger als 1,0 einzusetzen. (Die Gesamtverstärkung des FIR-Filters kann bei Bedarf an seinem Ausgang eingestellt werden.) Dies ist ein wichtiger Aspekt bei der Verwendung von Festpunkt-DSPs, da sie die Implementierung viel einfacher macht. 1.6.2 Was sind die Nachteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern haben FIR-Filter manchmal den Nachteil, dass sie mehr Speicher und / oder Berechnung benötigen, um eine gegebene Filtercharakteristik zu erreichen. Auch sind bestimmte Reaktionen mit FIR-Filtern nicht praktikabel. 1.7 Welche Begriffe werden bei der Beschreibung von FIR-Filtern verwendet? Impulsantwort - Der Impulsantwortfaktor eines FIR-Filters ist eigentlich nur der Satz von FIR-Koeffizienten. (Wenn Sie ein quotimplusequot in einen FIR-Filter setzen, der aus einem quotierten Quot-Sample besteht, gefolgt von vielen quot0quot-Samples, ist das Ausgangssignal des Filters die Menge der Koeffizienten, wenn sich die 1 Sample nacheinander um jeden Koeffizienten bewegt, um die Ausgabe zu bilden. Tippen - Ein FIR quottapquot ist einfach ein Koeffizient / Verzögerungspaar. Die Anzahl der FIR-Anzapfungen (oft als "Anfasser" bezeichnet) ist ein Hinweis auf 1) die zur Implementierung des Filters erforderliche Speicherkapazität, 2) die Anzahl der erforderlichen Berechnungen und 3) die Menge des Filterfilters, Multiply-Accumulate (MAC) - In einem FIR-Kontext ist ein MACquot der Vorgang des Multiplizierens eines Koeffizienten mit dem entsprechenden verzögerten Datenabtastwert und dem Akkumulieren des Ergebnisses. FIRs erfordern normalerweise einen MAC pro Hahn. Die meisten DSP-Mikroprozessoren implementieren die MAC-Operation in einem einzigen Befehlszyklus. Transition Band - Das Frequenzband zwischen Passband - und Stopband-Kanten. Je schmaler das Übergangsband ist, desto mehr Taps werden benötigt, um den Filter zu implementieren. (Ein quotsmallquot-Übergangsband führt zu einem quotsharpquot-Filter.) Delay Line - Der Satz von Speicherelementen, die die quotZ-1quot-Verzögerungselemente der FIR-Berechnung implementieren. Zirkulärer Puffer - Ein spezieller Puffer, der zirkulär ist, weil eine Inkrementierung am Ende dazu führt, dass er an den Anfang wickelt, oder weil das Dekrementieren von Anfang an bewirkt, dass es bis zum Ende umwickelt. Zirkuläre Puffer werden oft von DSP-Mikroprozessoren bereitgestellt, um den Quotientenquot der Proben durch die FIR-Verzögerungsleitung zu implementieren, ohne die Daten im Speicher wörtlich bewegen zu müssen. Wenn ein neues Sample zum Puffer hinzugefügt wird, ersetzt es automatisch das älteste. Guppy Moving Average. CodersGuru, diesen Thread fand ich bei ForexFactory, Guppy Moving Average eine äußerst wunderbare Aufgabe, Trends zu identifizieren. Zitat von diesem Forum Google Daryl Guppy. Nur einer der besten Händler aus Australien, die jemals ging die Erde Es gibt ein ausgezeichnetes Buch von Daryl Guppy Trend Trading, die seinen Ansatz gut erklärt. Es kann festgestellt werden, ich bin nicht sehr gut versiert im Forex, so dass ich wünsche, wenn Sie könnten lesen Sie mehr über dieses System und versuchen es zu verstehen, so dass alle von uns hier davon profitieren kann ich persönlich das Gefühl, dass die Guppy MA ist äußerst nützlich Moreso für einen MA Guru wie Sie. Ich hoffe wirklich, dass Sie uns auf dieser MA mehr erleuchten können. Im sorry wieder, wenn ich gegen Regeln verstoßen, indem ich diesen Thread In den pic ist ein combinatiton von 2 Indikatoren 2) xpMA von CodersGuru In der pic posted. U sehen, dass xpMA für die aktuelle Marktsituation ROT (Aufwärtstrend) oder BLAU (Abwärtstrend) zeigt. ABER. Manchmal kann der Markt auch reichen und oder abgehackt sein. Das ist, wo ich im Bild kreiste. So kommt GUPPY MMA zur Rettung. Nur öffnen, wenn ALLE 7 Linien (grün und gelb) auf beiden Seiten einander kreuzen UND wenn xpMA zeigt, dass der Trend in die richtige Richtung als GUPPY MMA geht. Ich hoffe, dass ich geholfen habe. PS. Und um den Marktzustand weiter zu filtern, nutze ich auch den Nittanys Trending oder Ranging ToR Indicator, um die aktuelle Marktsituation, entweder Ranging oder Trending, weiter zu bestätigen. Mit dieser Methode habe ich die Trendbewegungen erfolgreich isoliert. Ich hoffe auch, dass einige ältere Mitglieder mein System weiter verbessern können yusof786: Ich bin die Indikatoren anhängen, so dass andere auch davon profitieren können. 1) Guppy MMA (Cyrox) - Schablonenformat 2) xpMA durch Coders Guru OK, wie man diese Indikatorkombinationen benutzt, um ein trade. Place ein Handel nur zu setzen, wenn alle 3 Anzeigen zustimmen. 1. Wenn Guppy MMAs 7 gelbe und grüne Linien kreuzen einander und sieht aus wie ein Mundöffnung ist. 2. Wenn XpMA Trend zeigt die gleiche wie Guppy MMAs Trend 3. Wenn Nittanys ToR zeigt, dass alle Zeitrahmen Trending sind (All Blue Arrow oder All Red Arrow zeigt sich oder seitwärts) Plz versuchen, diese Trading-Stil von mir. Ich hoffe, es kommt nützlich, every1 draußen. DANK FÜR IHRE HARTE ARBEITEN KÖNNEN SIE MICH DIE EINSTELLUNGEN AUF DEM xpMA von CODER GURU ERKLÄREN, WEIL ICH IHRE SCHABLONE ICH ERÖFFNET, DASS SIE DANKE IM VORAUS VERLETZT
Comments
Post a Comment